Identification of Sesame Genomic Variations from Genome Comparison of Landrace and Variety
نویسندگان
چکیده
Sesame (Sesamum indicum L.) is one of the main oilseed crops, providing vegetable oil and protein to human. Landrace is the gene source of variety, carrying many desire alleles for genetic improvement. Despite the importance of sesame landrace, genome of sesame landrace remains unexplored and genomic variations between landrace and variety still is not clear. To identify the genomic variations between sesame landrace and variety, two representative sesame landrace accessions, "Baizhima" and "Mishuozhima," were selected and re-sequenced. The genome sequencing and de novo assembling of the two sesame landraces resulted in draft genomes of 267 Mb and 254 Mb, respectively, with the contig N50 more than 47 kb. Totally, 1,332,025 SNPs and 506,245 InDels were identified from the genome of "Baizhima" and "Mishuozhima" by comparison of the genome of a variety "Zhongzhi13." Among the genomic variations, 70,018 SNPs and 8311 InDels were located in the coding regions of genes. Genomic variations may contribute to variation of sesame agronomic traits such as flowering time, plant height, and oil content. The identified genomic variations were successfully used in the QTL mapping and the black pigment synthesis gene, PPO, was found to be the candidate gene of sesame seed coat color. The comprehensively compared genomes of sesame landrace and modern variety produced massive useful genomic information, constituting a powerful tool to support genetic research, and molecular breeding of sesame.
منابع مشابه
Strategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملAppraisal of the entire mitochondrial genome for DNA barcoding in birds
DNA barcoding based on a standardized region of 648 base pairs of mitochondrial DNAsequences from Cytochrome C Oxidase 1 (COX1) is proposed for animal species identification.Recent studies suggested that DNA barcoding has been effective for identifying 94% of birdspecies. The proposed threshold of 10 times the average intraspecific variation could be used forthe identification and delimitation ...
متن کاملIdentification of adapted genotypes in sesame lines based on multi-trait selection
Identification of genotypes adapted to a particular region is of special interest to breeders and plant geneticists. In order to identify adapted genotypes in sesame lines based on multi-trait selection, an experiment was conducted in a completely randomized block design with four replications at Moghan Agricultural Research Station of Ardabil Agricultural and Natural Resources Research and Edu...
متن کاملبررسی تحمل به خشکی در توده های محلی کنجد (Sesamium indicum L.) بر اساس شاخص های تحمل به تنش خشکی در سطوح مختلف آبیاری و میکوریزا
Sesame is one of the plants that due to the high content (47-52%) and high quality (low cholesterol and some antioxidants) its seed oil, important role has in human health. An experimental with objective to evaluate eight local landraces of sesame to drought stress based on grain yield and drought tolerance indices using factorial split plot design was conducted with three replications in resea...
متن کامل